PHY4006 equations
🇬🇧
In English
In English
Practice Known Questions
Stay up to date with your due questions
Complete 5 questions to enable practice
Exams
Exam: Test your skills
Test your skills in exam mode
Learn New Questions
Manual Mode [BETA]
Select your own question and answer types
PHY4006 equations - Leaderboard
PHY4006 equations - Details
Levels:
Questions:
61 questions
🇬🇧 | 🇬🇧 |
Absorb fraction of radiation | Mk/4pir^2 |
Radiation force | Mk/4pi^2 *L/c |
Eddington luminosity with efficenty | Nu*Macc*c^2 |
Eddington mass with luminosity | Ledd/c^2*nu |
Eddington mass without luminosity | 4piGM/kcnu |
Effective temperature | (L/4piSigmasbR^2)^0.25 |
Accretion rate for wind fed accretion | Momega(GM/a)^2*Vomage^-4 |
Wind fed capture radius | 2GM/Vomage^2 |
Luminosity of disk | GM/2R*Macc |
Luminosity of disk with Luminosity Acrretion | Ldisk=0.5Lacc |
Temperture of accretion disk | (3GMMacc/8pir^3sigmasb)^0.25*(1-(R/r)^0.5)^0.25 |
Schwarzchild ISCO | 6GM/c^2 |
Kerr ISCO | GM/c^2 |
Lamour formula | Q^2a^2/16*pi^2*episolon*c^3 sin^2(0) |
Spectrum of radiation | 2q^2(a)^2/3eplision*c^2 |
Thermal Bremsstrahlung | 6.8e^-51*Z^2*T^-0.5*ni*ne*gff*exp(-hc/kT) |
Thermal Bremsstrahlung without frequencies | 1.4e^-40*Z^2*T*0.5*ni*ne*gff |
Lamour radius | Gamma*m*v/qB |
Synchrontron power radiation | 1.25*sigmaT*c*Umag*gamma^2*beta^2 |
Umag | B^2/2Mu |
Beta | V/c |
Sychrontron power radiation for all | 1.25*sigmaT*c*Umag*gamma^2*beta^2*ne |
Doppler shift | Gamma*v(1-beta*cos(0)) |
Aberration | Cos(0)-beta/1-beta*cos(0) |
Sychrontron pulse diraction | (gamma^3*omegaB)^-1 or m/gamma^2*q*B |
Sychrontron pulse diraction genereal | (gamma^3*omegaB*sin(alpha))^-1 |
Total synchrotron power | Gamma^3*omegaB/2pi |
Compton scattering frequancy and energy | Gamma^2v or gamma^2E |
Reconnection rate of solar flare (Mo) | 1/sqrt(Rm) |
Sweet-Parker reconnection dissipation energy | 1/4pi *B^2*L^2*va*Mo*tauf |
Reconnection rate of solar flares (shock) | Pi/8ln(Le/Delta) approx pi/8ln(Rm) |
Fermi energy | H^2/8me * (3Ne/piN)^2/3 |
Total Fermi energy (non rel) | 3/5*Ne*eplisionF |
Total Fermi energy (rel) | 3/4*Ne*eplisionF |
Total energy of a cool star (non rel) | 3/5*Ne*Efe*eplsion - 3/5 *GM^2/R |
Radius if a WD | Xh^2/4me * (9xN/4pi^2)^2/3 * 1/GNmp^2 |
Total energy of star (rel) | 3/4*Ne*Efe*eplsion - 3/5 *GM^2/R |
Fermi energy (rel) | Hc/2 * (3Ne/piV)^1/3 |
Chandrasekhar limit | 3/16 * (125pi)^0.5*x^2*(hc/2pi*G*mp^2)^1.5 |
Total energy of neutron (non rel) | 3/5 * Nn*epsilonF,n |
Fermi energy of neutron | H^2/8mn * (3Nn/piV)^2/3 |
Radius of a NS | H^2/4G*N^1/3*mp^3 * (9/4pi^2)^2/3 |
Energy loss rate from pulasr rotation | -4pi^2*I*T/T^3 |
Schwarzschild radius | 2GM/c^2 |
Surface gravity of a BH (k) | C^4/4GM |
First law of BH mechanices | DM = 1/8piG * kdA + OmegadJ + PhidQ |
Hawking temperature | Hbar*c^3/8pi*Kb*GM |
Energy radiated from a BH | -de/dt = 4pi*Rshw*sigma*Th^4 |
Free-fall time of collapse for SNe | Sqrt(3/2piG*rho) |
Gravitational wave frequency | 2*sqrt(G(M1+M2)/a^3) |
Total time for a GW binary to merge | 5/256 * c^5/G^3 * a^4/M1M2(M1+M2) |
Confinement radius | Gamma*mc/q*B |
Strong shock jump conditions | Rhod/rhou = 4 or vu/vd = 4 |
Cherenkov Radiation: opening angle | Cos(0) = 1/n*beta |
Homestake: Rate of neutrinos measured in detector | Phi*sigma*n*V |
Probability of an oscillation | Sin^2(20)sin^2(1.27Delta*m^2*l/Ev) |