Gis- 1. izpit
🇸🇮
In Slovenian
In Slovenian
Practice Known Questions
Stay up to date with your due questions
Complete 5 questions to enable practice
Exams
Exam: Test your skills
Test your skills in exam mode
Learn New Questions
Manual Mode [BETA]
Select your own question and answer types
Specific modes
Learn with flashcards
Listening & SpellingSpelling: Type what you hear
multiple choiceMultiple choice mode
SpeakingAnswer with voice
Speaking & ListeningPractice pronunciation
TypingTyping only mode
Gis- 1. izpit - Leaderboard
Gis- 1. izpit - Details
Levels:
Questions:
70 questions
🇸🇮 | 🇸🇮 |
ALS | (AirborneLaser Scanning) skeniranjesnemanje iz letalalaserski žarek skenirapovršje, meri čas odbojačas preračunamo v razdaljo, to pa v koordinatepreko precizne GPS lokacijedobimo t.i. oblak točk (OT) -lokacije XYZin tudi DMR1(osnova za PAS) |
ALS | (AirborneLaser Scanning) skeniranjesnemanje iz letalalaserski žarek skenirapovršje, meri čas odbojačas preračunamo v razdaljo, to pa v koordinatepreko precizne GPS lokacijedobimo t.i. oblak točk (OT) -lokacije XYZin tudi DMR1(osnova za PAS) |
ALS | (AirborneLaser Scanning) skeniranjesnemanje iz letalalaserski žarek skenirapovršje, meri čas odbojačas preračunamo v razdaljo, to pa v koordinatepreko precizne GPS lokacijedobimo t.i. oblak točk (OT) -lokacije XYZin tudi DMR1(osnova za PAS) |
Kaj je GIS? | GIS = Geografski Informacijski Sistem(Geographic Information System) |
GIS je sistem, ki omogoča: | –zajem in vnosprostorskih podatkov–organizacijo in shranjevanje prostorskih podatkov–urejanje in popravljanje prostorskih podatkov–analizo in prostorske poizvedbe–prikaz (vizualizacijo) prostorskih podatkov–nadaljnjo distribucijo podatkov v druga okolja |
Razlika med GIS in CAD ! | CAD (Computer Aided Design) je namenjen predvsem prikazu in izrisu podatkov (npr. AutoCAD)GIS poleg prikaza omogoča predvsem tudi prostorske analize podatkov |
Pravni vidiki | praktično to pomeni, da moramo pri delu:podati izjavo o seznanitvi z pogoji uporabe podatkovod lastnika pridobiti dovoljenje za uporabo podatkovpri uporabi v svojem delu navesti vir podatkov |
Primeri uporabe QGIS na zelo različnih področjih | agrikultura–vplivi vremena na agrikulturo, raba talpodjetja–vpliv selitve podjetja na aktivnost delavcevobramba–vojaško načrtovanje in strategijaekologija–načrtovanje narodnih parkov, migracije živalielektrična in energetska omrežja–daljnovodi, razvejanost plinovodov, naftovodov...krizne situacije–karte potencialnih naravnih nesreč (potresi) in smeri evakuacij |
Sestavine GIS-a | 1. podatkiprostorski, časovni, opisni, metapodatki2. programska oprema (software) 3. strojna oprema (hardware)računalniki, skenerji, oprema za digitalizacijo, GPS, printerji, ploterji4. ljudjeuporabniki in upravljavci GIS-a5. procedure oz. organizacijski postopkiorganizacijska, administrativna, kulturna okolja in postopki,ki zagotavljajo delovanje GIS-a |
Vrste podatkov | 1. Prostorski podatki–koordinate, povedo, KJE so podatki2. Opisni oz. atributni podatki–opisne informacije–to niso koordinate, temveč „pravi“ podatki (KAJ?)(3. Metapodatki)–"podatki o podatkih" |
. prostorski podatki | –imenovani tudi geografski podatki–prostorske 2-D (x, y) ali 3-D koordinate (x, y, z)–prostorsko-časovni podatek -ima tudi časovno koordinato (x, y, z, t) |
2. opisni oz. atributni podatki | –vezani so na prostorske podatke–npr. tip kamnine, stopnja ogroženosti zaradi plazov, analize vode ali tal, ... |
3. metapodatki | (angl. metadata)–"podatki o podatkih"–podajajo predvsem informacije o vsebini, kakovosti, zgodovini, dostopnosti in lastništvu podatkov–standardizirani–javno dostopni |
Tipi prostorskih podatkov | I. vektorskipodatki prostor je razdeljen v nepovezane enote II. rastrskipodatk i prostor je razdeljen na zvezne enote |
Geometrija objektovse deli na | :1. točke–točke s koordinatami (x,y) ali (x, y, z)2. linije–enostavne–sestavljene = polilinije3. območja (poligoni)–zaključeni–sestavljeni iz med seboj povezanih linij |
II. Rastrski prikaz in zapis | vrednosti so zapisane v celicah, ki se nahajajo na koordinatah, določenimi s stolpci in vrsticamicelice tvorijo mrežo (angl. gridoz. raster) |
I. Barve v rastrskem zapisu | Ja i guess |
II. Barve v rastrskem zapisu | Barvni modeli1. RGB2. CMYK3. HSV (HSB) in HSL4. L*a*b |
1. Barvni model RGB | model treh osnovnih barv, ki se med seboj "mešajo":–R: rdeča (red), vrednosti 0–255–G: zelena (green) , vrednosti 0–255–B: modra (blue) , vrednosti 0–255vsaka barva je mešanica teh treh!–možnih kombinacij: 256 x 256 x 256= 16.777.216 (24-bitna globina)primeri zapisa barv (R,G,B):-vijolična: (185, 132, 234)-črna: (0,0,0)-bela: (255,255,255)-modra (0,0,255)-zelena ( ? )primeren za prikaz na monitorju |
2. Barvni model CMYK | model treh (+1) osnovnih barv, ki se med seboj "mešajo":–C: cyan, vrednosti 0–100%–M: magenta, vrednosti 0–100%–Y: yellow, vrednosti 0–100%–K: key(black), vrednosti 0–100%primeren za tiskanjebarve „odštevamo“barve na monitorju ne ustrezajovedno tiskanim barvam zaradidrugačnega barvnega prostora(gamut) |
4. CIE Lab model (L*a*b) | L = svetlosta =dimenzija barve (zelena-vijolična, gre od -a do +a)b = dimenzija barve (rumena-modra , gre od -b do +b) |
Zajem podatkov | glede na vir podatkov ločimo zajem na:primarni zajem:–direktno iz virov podatkov–daljinsko zaznavanje (aerofoto, satelitsko) -rastrski podatki–GNSS (GPS...), geodetske meritve -vektorski podatki–lasersko lidarskosnemanje -oblak točksekundarni zajem:–iz že obstoječih virov–skeniranjekart, digitalni modeli višin -rastrski podatki–digitaliziranje in vektorizacijakart -vektorski podatki |
Primarni zajem -GNSS | tehnologija GNSSglobalni sistem satelitske navigacije (Global NavigationSatelliteSystem)–sistem za določitev položaja na Zemeljskem površjudoločitev položaja temelji na sprejemu signalov elektromagnetnega valovanja iz satelitov |
Primarni zajem -GNSS | Ostali globalni satelitski sistem navigacije (GNSS)operativni:–GPS(Global PositioningSystem):-last ZDA, za celotno območje Zemlje (najbolj znan)-24 delujočih satelitov, od 1994 dalje (prvi: 1978)–GLONASS: ruski (Глобальнаянавигационнаяспутниковаясистема), celotno območje Zemlje-24 delujočih satelitov, od 2011 daljedelno operativni:–Galileo(EU, ESA): območje Evrope-22 (+2 testna) satelitov deluje, 2 nista dostopna javnosti-planirana je natančnost do 1 m, skupaj 30 satelitov–Compassnavigation(Beidou-2 in Beidou-3): Kitajska (2020)-34 satelitov v orbiti, v planu skupaj 35–QZSSnavigation(Quasi-ZenithSatelliteSystem/Michibiki): Japonska (4 delujejo, v planu jih je 7 do 2023), regionalni, ne globalni!planirani: NAVIC(Indian RegionalNavigationSatelliteSystem(IRNSS), Indija), tudi regionalni! |
GPS tehnologija je sestavljena iz treh segmentov: | 1. Satelitski–referenčne točke, iz katerih sprejemniki na Zemlji izračunajo svojo pozicijo s triangulacijo. 2. Kontrolni–pet kontrolnih centrov na Zemlji, od koder nadzorujejo satelite in jih usmerjajo v pravilne orbite3. Uporabniški–vsi GPS sprejemniki |
DOP | DOPse tekom dneva spreminja zaradi različnih pozicij satelitov napaka je izražena kot DOP(Dilutionof Precision):brezdimenzijskorazmerje DOPse tekom dneva spreminja zaradi različnih pozicij satelitov vrednosti DOP:<1: idealne1-2: izjemne2-5: dobre5-10: zmerne10-20: majhne20: slaberazni sprejemniki in mobilne aplikacije(npr. GPS status) omogočajo pregled teh vrednosti |
Natančnost bistveno izboljšamo z uporabo | Diferencialnega GPS (DGPS)–potrebujemo dva sprejemnika (eden je stacionaren na Zemlji)–referenčna fiksna postaja ima znano lokacijo ter oddaja signal sprejemnikom–s poznavanjem obeh sprejetih signalov izničimo motnje pri sprejemu |
Glavne napake pri določanju pozicije: | motnje v ionosferi in troposferimotnje sprejema signala („urbani kanjoni“, gozd, sklanjanje nad sprejemnik)napake sprejemnikov (ure)orbitalne napakeodboji od stenpremajhno število vidnih satelitov načrtno motenje kvalitete signala in degradiranje točnostilokalno motenje |
Sprejem poteka z GPS sprejemniki | dobimo seznam koordinat, ki so v geografskem koordinatnem sistemu WGS84(stopinjski zapis), npr. 46.05ºN, 14.50ºEte v računalniški obliki prenesemo direktno v GIS ali pa jih pretvorimo preko vmesnih oblik (izvoz GPXdatotek)za pretvorbo v projekcijski koordinatni sistem (Gauss-Krüger) potrebujemo transformacijo stopinjskih koordinat v metrske |
Shranjevanje podatkov | Podatki v GIS-u so shranjeni v podatkovnih bazahpodatkovna bazaje zbirka urejenih podatkov, ponavadi povezanih v tabeleizdelava in vzdrževanje baz je zelo zahtevnosistem upravljanja s podatkovnimi bazami = DBMS–(DataBase Management System) je računalniškiprogram za shranjevanje in dostop do podatkovv podatkovnih bazah vrste podatkovnih baz:relacijska (RDBMS) -95 % vseh bazobjektna (ODBMS) -neprimerna za prostorske objekteobjektno-relacijska (ORDBMS) -mešanica obehrelacijskapodatkovna baza(RDBMS)podatki so shranjeni v medseboj povezanihtabelah |
Povezave med tabelami v podatkovnih bazah | v relacijskih bazah so tabele povezane med sebojpovezave se ločijo po številu povezanih zapisov v eni in v drugi tabeli (ime za tovrstne povezave je kardinalnost)tri možnosti:–1:1(1:11:1one-to-one)–1:več(1:n1:∞one-to-many)-vsakemu zapisu iz ene tabele ustreza več zapisov iz druge tabele-ime in priimek : opravljeni izpiti–(več:več(n:n∞:∞many-to-many))-več zapisom iz ene tabele ustreza več zapisov iz druge tabele |
Povezave med tabelami v podatkovnih bazah | tabele so med seboj povezane s primarnimi ključipovežemo jih lahko na dva načina:–1. jih združimo (angl. join)-število zapisov ostane enako-originalno tabelo prepišemo ("povozimo")-možno le pri razmerju 1:1–2. jih povežemo (angl. relate)-tabele se ne spremenijo-število zapisov se večinoma poveča-možno pri razmerjih 1:1, 1:n, n:n |
Georeferenciranje | = določitev prostorske lokacije nekemu objektuprostorska lokacija v prostoru je obvezen podatekčasovni podatek je neobvezen |
Georeferenciranje | 1. Imena krajevenostavnaslabosti:–veliko različnih krajev ima lahko isto ime–en kraj ima lahko več imen (Atene / Athens/ Αθήνα)več Ljubljan inMariborov ! Georeferenciranje1. Imena krajevenostavnaslabosti:–veliko različnih krajev ima lahko isto ime–en kraj ima lahko več imen (Atene / Athens/ Αθήνα) Georeferenciranje2. Naslovi in poštne številkeenolično določene lokacije skoraj povsod po svetu–Aškerčeva 12, 1000 Ljubljana, Slovenija–izjeme: Japonskaslabosti: uporabne le za naslove bivanj, ne pa tudi za naravne objekte (vrhovi, jame, ...) Georeferenciranje3. Linearno georeferenciranje–oddaljenost v metrih (ali drugi enoti) od točke vzdolž linije (ceste, železnice, ...)–uporabna pri cestah (npr. 33. km ceste G2, odsek 1275) in za določitev kraja nesreče na cestah–slabosti: lokacija je podana relativno glede na izhodišče Georeferenciranje4. Katastrske občine in parceleenolično določene s katastrsko občino in parcelno številkoglavne slabosti:–vsaka država ima svojo klasifikacijo–spreminjajo se s časom–določajo le površino–nenatančne za točke 5. Ostali načiniprojekt „Katere tri besede?“ oz. „Whatthreewords?“georeferenciranje z natančnostjo 3x3m z uporabo treh besed (možno v več jezikih)oblika: beseda1.beseda2.beseda3primer naslova: blockading.dribbles.noisiest 6. Koordinatekoordinati x in y (včasih tudi z)najboljši sistem za določitev lokacij–omogoča izredno natančno določitev položaja na Zemlji–omogoča računanje in pretvarjanje koordinatveč možnih zapisov (enot)–„stopinjski“: stopinje, minute, sekunde–„ravninski“: X in Y koordinati (metri / kilometri / ...) |
Vrste koordinatnih sistemov | ločimo dva koordinatna sistema:I. geografski koordinatni sistemII. projecirani koordinatni sistem |
Geografski koordinatni sistem | lokacija točke na površini Zemlje je določena z:–geografsko širino (φ)(angl. latitude, lat.)-oddaljenost od ekvatorja v stopinjah-vrednosti med 0ºin 90º, severno (N) in južno (S)-točke z enako geografsko širino so vzporedniki–geografsko dolžino (λ)(angl. longitude, long.)-oddaljenost od Greenwichskegameridiana(0º) v stopinjah-vrednosti med 0ºin 180º, vzhodno (E) in zahodno (W)-točke z enako geografsko dolžino so poldnevniki–zapis koordinat za Aškerčevo 12:-46º02' 49.7322" N= 46.047148ºN-14º29' 51.8532" E= 14.497737ºE-torej se nahajamo približno na lokaciji:46.05ºN, 14.50ºE |
Primerjava ujemanja geoida, sferoida in dejanske površine Zemlje | –GPS-i merijo višino nad elipsoidom (npr. WGS84) = geoidnavišina, geoidnaondulacija–Slovenija: razlike med elipsoidno in geoidnovišino so geoidnevišine od cca 42 m do 50 m–geoid iz 2016: SLOVRP2016-Koper, 2x boljša višinska natančnost (10 cm), prej je bil AGM2000–nadmorska višina je ortometričnain se meri nad morjem–zato je geoid ploskev, ki se najbolj prilaga oceanom–diploma: J. Grahek, FGG, 2016 |
Vrste elipsoidov | 1. WGS84(WorldGeodeticSystemiz leta 1984)–najbolje prilagojen celotni zemeljski površini–uporaben za GPS pozicioniranje–a=6.378.137,000 m–b=6.356.752,3142 m–f=1/298,257223563 I. Geografski koordinatni sistemvrste elipsoidov2. Besslovelipsoid (iz leta 1841)–uporabljala ga je Avstro-Ogrska, nato Jugoslavija in Slovenija–dobro prileganje obliki Zemlje na območju Evrope (Evrazije)–toda slabo ujemanje za cel svet–a=6.377.397,155 m–b=6.356.078,963 m–f=1/299,152815 I. Geografski koordinatni sistemvrste elipsoidov3. GRS80(Global Reference Systemiz leta 1980)–praktično enak kot WGS84–a=6.378.137,000 m–b=6.356.752,3141 m–f=1/298,257222101–razlika je torej le 0,1 mm pri osi b!!!–uporaben kot osnovni elipsoid za nov Evropski koordinatni sistem ETRS89/TM, ki ga uporabljamo v Sloveniji4. ostali elipsoidi–Clarke (1866), NAD27(1927), WGS72(1972), ...–niso pomembni za naše območje ali so zastareli |
Projekcijski koordinatni sistemi | Uporabljamo kartezični koordinatni sistem (osi x in y)po vrsti deformacij ločimo več vrst projekcij:–konformne(angl. conformal), enakokotne-ohranjajo se koti-popačijo se površine in razdalje-uporabne za navigacijo–ekvivalentne (angl. equal-area), enakoploščinske-ohranjajo se površine-popačijo se razdalje, koti in oblike–ekvidistančne(angl. equidistant)-ohranjajo se razdalje-popačijo se oblike, koti in površine–ostale (gnomonske, kompromisne) |
2. Projekcijski koordinatni sistemi | Ipo vrsti projekcij ločimo več vrst:1. stožčaste (konične)2. valjne (cilindrične)3. ravninske (planarne)ločijo se po tem, na kakšen način projeciramo točke iz Zemlje na ravnino |
Projekcijski koordinatni sistemi | . stožčaste (konusne, angl. conic)površino Zemlje prenesemo na plašč stožca, ki lahko:–seka površino Zemlje (sekantna projekcija)–se dotika površine Zemlje (dotikalna, tangentna projekcija)–slabosti: ukrivljeni vzporedniki, težka primerjava geog. širin 2. Projekcijski koordinatni sistemi2. valjne (cilindrične)površino Zemlje prenesemo na plašč valja–normalne: valj se dotika ekvatorja–prečne(angl. transverse): valj se dotika poldnevnika–poševne (angl. oblique): valj se dotika poljubnega kroga–lahko so dotikalne ali sekantne–razdalje so prave le na dotikalnih poldnevnikih oz. ekvatorju 2. Projekcijski koordinatni sistemi3. ravninske (planarne)projekcija površja na ravnino, ki se dotika Zemljelahko so dotikalne ali sekantnepo točki dotikanja Zemlje ločimo:–polarne(točka dotikanja je severni ali južni pol)–ekvatorialne(točka dotikanja je na ekvatorju)–poševne(točka dotikanja je kjerkoli) 2. Projekcijski koordinatni sistemi3. ravninske (planarne) -nadaljevanjeazimutne (angl. azimuthal): posebne ravninske projekcijepo lokaciji projekcijskega središča ločimo:–gnomonsko-projekcijsko središče je v središču Zemlje–stereografsko-na površini Zemlje–ortografsko-v neskončnosti najbolj znani projekcijski sistemi1. Mercatorjeva projekcija–konformna, cilindrična–vsaka linija predstavlja pravo smer (azimut)–uporabna za navigacijo Gauss-Krügerjevsistem v Sloveniji–naš stari državni koordinatni sistem ima oznako (datum) D48/GK–uporablja Besselov1841 elipsoid–pravokotna koordinatna mreža–površje Zemlje je razdeljeno v cone širine 3ºokoli poldnevnikov (1. cona -okoli 3. poldnevnika) |
Koordinatni sistem je določen z naslednjimi parametri | (doktorat: T. Podobnikar, 2001):geografsko dolžino srednjega meridiana λ0,= 15ºgeografsko širino izhodišča projekcije φ0,= 0ºfaktor merila na srednjem meridianu (oznaka m0ali redkeje k) ali modul projekcije, ki zagotavlja, da linearna deformacija nikjer znotraj cone ne presega določene vrednosti, = 0.9999abscisni zamik (angl. falsenorthing) in = -5.000.000 mordinatni zamik (angl. falseeasting) –ker bi bile sicer y-koordinate točk, ki ležijo zahodno od srednjega meridiana, negativne. =+500.000 m |
D96/TM | Koordinatni sistem v Slovenijinaš nov državni koordinatni sistem ima oznako D96/TM in temelji na geografskem datumu ETRS89(EuropeanTerrestrialReference System1989)vezan na statično Evrazijsko ploščo, zato se koordinate, vezane na ETRS89, ne spreminjajo zaradi potovanja tektonskih plošč–koordinate kraja se spreminjajo v času zaradi potovanja plošč! |
ZDGRS) | Zakon o državnem geodetskem referenčnem sistemu (, Uradni list 25/20144. člen: Ta zakon se ne uporablja za potrebe Slovenske vojske, ki uporablja izključno koordinatni sistem zveze NATO.5. člen: Državni prostorski koordinatni sistem je skladen z evropskim prostorskim koordinatnim sistemom ESRS (EuropeanSpatialReference System). |
Najbolj znane mreže | 3. Univerzalna prečna Mercatorjeva projekcija (UTM)–konformna, cilindrična–podobno kot pri Gauss-Krügerjevi projekciji je površina Zemlje razdeljena v cone, toda širine 6ºokoli poldnevnikov (60 con)–črke označujejo cone v smeri od juga proti severu–Slovenija je v coni 33T 2. Projekcijski koordinatni sisteminajbolj znani projekcijski sistemi4. Univerzalna polarna stereografska projekcija (UPS)–konformna, stereografska–uporabna za projekcijo visokih geografskih širin, kjer ostale projekcije preveč popačijo (UTM ima omejitev do 84ºN in 80ºS) |
Lociranje -AML | V primeru nujnega dogodka je natančna lokacija klicatelja ključnega pomena. Le tako lahko enote prve pomoči hitro posredujejo in nudijo pomoč.Ko oseba na številko 112 kliče iz pametnega telefona, se lokacija klicatelja se lokacija klicatelja prikaže na geografski karti v informacijskem sistemu in sestavi na podlagi jakosti signala baznih postaj, znotraj katerih se klicatelj giblje. V tem primeru je lokacija klicatelja na geografski karti označena kot območje in v večini primerov ni zadovoljiva za hitro posredovanje. Zato je prišlo do razvoja tehnologije AML (angl. AdvancedMobileLocation), ki smo jo v Sloveniji začeli uporabljati med prvimi na svetu.Tehnologija AML deluje na način, da pametni telefon ob klicu na številko 112, poleg vzpostavitve glasovnega kanala za pogovor z operaterjem, posreduje tudi kratko sporočilo. Ta vsebuje natančno lokacijo klicatelja in se sestavi na podlagi jakosti baznih postaj, brezžičnih omrežij v okolici klicatelja, in signala GPS. V tem primeru je lokacija dovolj natančna za hitro posredovanje. Lociranje -AMLOrganizacija: EENA-the European Emergency Number Associationwww.eena.org/amlUprava RS za zaščito in reševanje: SPIN https://spin3.sos112.si/javno/zemljevid IV. Urejanje podatkov 223 of 469 |
Ločimo dve vrsti kart | :referenčne–podajajo splošne informacije (ceste, relief, ...) o ozemljutematske–podajajo specialne informacije (gostota prebivalstva, območja plazovitosti, nahajališča fosilov, kamnolomov, ...) |
Vsaka karta mora vsebovati: | naslovmeriloozemljelegendoavtorja, letoorientacijo (sever)koordinate(mrežo ali oznake)geološke karte:–profili–litološki stolpci |
Ločimo več načinov prikaza rastrskih objektov: | 1. prikaz večkanalnih barv (angl. Multibandcolor)2. prikaz palete barv (Paletted)3. prikaz sivih odtenkov (Singlebandgrey)4. prikaz barvne lestvice (Singlebandpseudocolor)5. prikaz senčenja reliefa (Hillshade) |
Shapedatoteke | za razliko od geopodatkovnihbaz lahko vsebujejo le en tip podatkov:–točke–linije–poligonishranjene so kot več datotek!–jame.shpgeometrija objektov (npr. točke)–jame.shxindeksi za hitrejše poizvedbe–jame.dbfatributna tabela (dBASEformat)–jame.prjkoordinatni sistemtoda: nimajo shranjene simbologije(barv, simbolov, ...) |
Ostali tipi datotek | CAD datotekedostopamo lahko tudi direktno do datotek, shranjenih v formatu CAD programov (AutoCAD, ... )*.DWG ali *.DXFtoda...vsako geometrijo (točke, linije, poligoni + sloj anotacijoz. imena/besedila) moramo obravnavati ločenorastrske slikeGIF, BMP, TIF, MrSID, JPG, IMG (ERDAS Imagine)...tabele |
Analiza podatkov | ločimo več vrst analiz podatkov:1. poizvedbe2. meritve3. prostorsko modeliranje4. optimizacijo |
Merilo | grafično–prikaz z razdelkitekstovno–prikaz z opisom–1 cm = 200 mštevilčno–1:50.000 |
Prikaz ploskev oz. površin | prikaz z rastriprednosti: bolj enostavni, hitri izračunislabosti: manj natančni, težave z ločljivostjoprikaz s TIN mrežamilahko upoštevamo bariere (vektorske)boljši za prikaz rek, grebenov ipd. |
TIN | = nepravilna trikotniška mreža(triangulated irregular network)izdelamo jo s triangulacijo oz. s povezovanjem znanih treh točk v čim bolj enakostranične trikotnike |
ALS | (AirborneLaser Scanning) skeniranjesnemanje iz letalalaserski žarek skenirapovršje, meri čas odbojačas preračunamo v razdaljo, to pa v koordinatepreko precizne GPS lokacijedobimo t.i. oblak točk (OT) -lokacije XYZin tudi DMR1(osnova za PAS) |
Od Komaca : kakšna je razlika med kontrolirano in nekontrolirano klasifikacijo podob | Nenadzirano(nekontrolirano): Analitik določi število spektralnih razredov, katerih in-situ lastnosti pa ne pozna . Združevanje na podlagi K-srednjih vrednosti . Nadzirano: Analitik poda spektralne opise razredov (učna območja) Algoritem na podlagi znanih opisov razvrsti vse celice na podobi v razrede |
Kakšne vrste podatkov poznaš in jih opiši? | 1. prostorski podatki imenovani tudi geografski podatki imajo prostorske 2-D (x, y) ali 3-D koordinate (x, y, z) povedo – KJE? prostorsko-časovni podatek - ima tudi časovno koordinato (x, y, z, t) 2. opisni oz. atributni podatki nimajo koordinat, povedo, KAJ? vezani so na prostorske podatke npr. tip kamnine, stopnja ogroženosti zaradi plazov, analize vode ali tal... 3. metapodatki (angl. Metadata) "podatki o podatkih" podajajo predvsem informacije o vsebini, kakovosti, zgodovini, dostopnosti in lastništvu podatkov standardizirani in javno dostopni |
Na kratko piši postopek kako bi z GIS-om naredil sloj kjer imaš različne geološke plasti, različne litologije z različnimi fosili. | Na kratko piši postopek kako bi z GIS-om naredil sloj kjer imaš različne geološke plasti, različne litologije z različnimi fosili. Najprej bi ustvaril novi vektorski plasti, eno za poligone in eno za točke. Vnesel bi potrebne stolpce, ki bi služili klasifikaciji v atribucijski tabelo. Nato bi uvozil karto geoloških plasti in jo digitaliziral tako, da bi vsem različnim geološkim plastem določil svoj poligon in jih označil z atributi kot so vrsta in starost kamnine in če imamo podatke še debelina plasti. Različne fosile bi digitaliziral tako da bi za vsako najdišče fosilov določil svojo točko ki bi ji pripisal atribute kot sta vrsta in število fosilov. To urejanje poteka s pomočjo orodne vrstice Editor. |
Na kakšne načine so podatki povezani v relacijskih bazah? | Povezave se ločijo po številu povezanih zapisov v eni in v drugi tabeli (ime za tovrstne povezave je kardinalnost) med seboj so lahko povezani na tri načine: -1:1 (1:1 1:1 one-to-one) vsakemu zapisu iz ene tabele ustreza le eden iz druge tabele vpisna številka : ime in priimek študenta -1:več (1:n 1:∞ one-to-many) vsakemu zapisu iz ene tabele ustreza več zapisov iz druge tabele ime in priimek : opravljeni izpiti -več:več (n:n ∞:∞ many-to-many) več zapisom iz ene tabele ustreza več zapisov iz druge tabele |
Opiši poimenovanje temeljnih topografskih načrtov. | Temeljni topografski načrti imajo oznako TTN. Poznamo TTN5 kar pomeni temeljni topografski načrt v merilu 1:5000 in TTN10 kar pomeni temeljni topografski načrt v merilu 1:10.000. |
Na kakšen način lahko zapišemo števila v GIS-u? | Byte(med 0 in 255), Short intiger (celo število), long intiger (celo število z večjim obsegom števil), single (številka z decimalnimi mesti, dubble (številka z decimalnimi mesti in večjim obsegom števil). |
Kaj so TIN mreže? | TIN pomeni triangulated irregular network ali nepravilna trikotniška mreža. Uporabljamo jih za pikaz površin. Dobimo jih a tako da po 3 znane točke s koordinatami x, y, z povezujemo v čim bolj enakostranične trikotnike. |
Kratka definicija daljinskega zaznavanja in naštej 3 primere uporabe v geologiji. | Pridobivanje podatkov o določenih objektih, ne da bi se jih dotikali ali kako drugače posegali v njih. uporaba za geomorfologijo, Litološko kartiranje , tektonika in ogroženost zaradi potresov , deformacije površja, prisotnost vode in vlage v tleh |
Uporabnost Gis-a (področja npr. agrikultura, ekologija,...) in opiši | Agrikultura : vplivi vremena na agrikulturo, raba tal podjetja : vpliv selitve podjetja na aktivnost delavcev ekologija : načrtovanje narodnih parkov, migracije živali zdravstvo : področja nalezljivih bolezni daljinsko zaznavanje : barvni ortofoto posnetki ozemlja, satelitski posnetki |
Kaj pomenijo kratice WGS84 in GRS80 | WGS84 (World Geodetic System iz leta 1984) GRS80 (Global Reference System iz leta 1980) |
Nekaj z poligoni pojasni union, merge in intersect | Merge: združevanje dveh ali več poligonov(ali linije) v enega če imajo enake lastnosti in se dotikajo. Pologoni morajo biti na istem sloju. Atributi se ohranijo iz prvega objekta. Primer: združimo dve geološki karti, na kateri je ista plast Union: Združujemo lahko poligone (ali linije) iz različnih slojev . Atributi posameznih slojev se ohranijo. Primer: iz posameznih slojev območij glin, peskov in prodov naredimo nov sloj sedimentnih kamnin Intersect: Nov poligon (linijo) sestavimo iz območja, kjer se prekrivata dva ali več poligonov . Atributi se ne ohranijo . |
Prelomi, jezera, plazovi, jame, nakloni pobočij... si moral napisati al gre za vektorsko (linija, točka, poligon) al za rastrsko obliko | Prelomi-linija, jezera-poligon, jame-točka, nakloni pobočij – raster |
Od Komaca : kakšna je razlika med kontrolirano in nekontrolirano klasifikacijo podob | Nenadzirano(nekontrolirano): Analitik določi število spektralnih razredov, katerih in-situ lastnosti pa ne pozna . Združevanje na podlagi K-srednjih vrednosti . Nadzirano: Analitik poda spektralne opise razredov (učna območja) Algoritem na podlagi znanih opisov razvrsti vse celice na podobi v razrede |